If it's not what You are looking for type in the equation solver your own equation and let us solve it.
14j^2+25j=0
a = 14; b = 25; c = 0;
Δ = b2-4ac
Δ = 252-4·14·0
Δ = 625
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$j_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$j_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{625}=25$$j_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(25)-25}{2*14}=\frac{-50}{28} =-1+11/14 $$j_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(25)+25}{2*14}=\frac{0}{28} =0 $
| Y=2(x²+4x)+2x-1 | | 47q^2-41q=0 | | 8f^2+22f+14=0 | | n+4=9×5 | | w-4.35=7.4 | | 2(5x=6)=6(2x=1) | | 5(6n+6=30 | | 100j^2+20j+1=0 | | w-3/4=41/2 | | 2x-1=4x+7+60 | | (6x-19)=3x+10 | | 4x4=2x=36 | | 15-2x=30 | | 4x+12=2x-15 | | 52,900=1.9x+21 | | 2j^-7j+6=0 | | 4y=6+(6-8)7y | | 7x-3=12-20x | | -12=-3+v/3 | | 18=x6/10 | | 4+5u=39 | | |4.2x-1.4|=7 | | 14/p=7.753/16.847 | | 2n^2-28n+48=0 | | 3.14*72.25=x | | -6c-36=-48 | | 84u^2-16u=0 | | -14=x/5-4 | | 8x+7=8x+2 | | -88=8(3-2n) | | 3q^2-14q+16=0 | | 3x+5=-3x+6 |